- function of an imaginary variable
- Техника: функция мнимого значения
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
function — /fungk sheuhn/, n. 1. the kind of action or activity proper to a person, thing, or institution; the purpose for which something is designed or exists; role. 2. any ceremonious public or social gathering or occasion. 3. a factor related to or… … Universalium
Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… … Wikipedia
Characteristic function (probability theory) — The characteristic function of a uniform U(–1,1) random variable. This function is real valued because it corresponds to a random variable that is symmetric around the origin; however in general case characteristic functions may be complex valued … Wikipedia
Riemann-Siegel theta function — In mathematics, the Riemann Siegel theta function is defined in terms of the Gamma function as: heta(t) = arg left(Gammaleft(frac{2it+1}{4} ight) ight) frac{log pi}{2} tfor real values of t. Here the argument is chosen in such a way that a… … Wikipedia
Wave function — Not to be confused with the related concept of the Wave equation Some trajectories of a harmonic oscillator (a ball attached to a spring) in classical mechanics (A B) and quantum mechanics (C H). In quantum mechanics (C H), the ball has a wave… … Wikipedia
Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… … Wikipedia
Moment-generating function — In probability theory and statistics, the moment generating function of any random variable is an alternative definition of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with… … Wikipedia
Subharmonic function — In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory. Intuitively, subharmonic functions are related to convex… … Wikipedia
Discontinuous function — Discontinuous Dis con*tin u*ous, a. 1. Not continuous; interrupted; broken off. [1913 Webster] A path that is zigzag, discontinuous, and intersected at every turn by human negligence. De Quincey. [1913 Webster] 2. Exhibiting a dissolution of… … The Collaborative International Dictionary of English
Almost periodic function — In mathematics, almost periodic functions are functions of a real number that are periodic up to a small error, first studied by Harald Bohr. There are generalizations to almost periodic functions on locally compact abelian groups. Almost… … Wikipedia
Exponential function — The natural exponential function y = ex In mathematics, the exponential function is the function ex, where e is the number (approximately 2.718281828) such that the function ex is its own derivative … Wikipedia